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Wind-tunnel t e s t s  have been completed on four ser ies  of low-aspect- 
Three of the 

The 

r a t i o  surfaces i n  the Mach number range from 1.49 t o  2.87. 
s e r i e s  tes ted  consisted of a cantilevered inboard panel with a t i p  con- 
t r o l  surface forming the outboard portion of the configuration. 
fourth ser ies  consisted of sting-mounted matched pairs  of all-movable 
control surfaces linked through a spring simulating the s t i f fness  of a 
common actuator system. Models of each ser ies  with several different  
values of the  r a t i o  of uncoupled bending frequency t o  uncoupled rota- 
t i ona l  frequency were tes ted.  
with mass balance. Within the range covered, it was found tha t  the 
lowest f lutter dynamic pressures were obtained when the  r a t i o  of 
uncoupled bending frequency t o  uncoupled rotat ional  frequency was near 1 
and t h a t  f lut ter  may be elimina.ted or  the  dynamic pressure at f l u t t e r  
may be increased by the use of mass balance, the  e f fec t  being greater 
at the lower frequency ra t ios .  

Some of the models tes ted  were equipped 

Calculations based on piston theory gave good results f o r  a l l  models 
of one of the ser ies  with the movable surface forming the outboard por- 
t ion .  
t r o l  surface were highly unconservative. 
a t i s m  was not determine&. 

Similar calculations f o r  t he  other two ser ies  with the  t i p  con- 
The reason f o r  t h i s  Unconserv- 

INTFtO DUC TION 

Aeroelastic i n s t a b i l i t i e s  such as f l u t t e r  and divergence have f o r  
years been problems faced by the designers of a i r c ra f t .  
such problems will continue t o  be quite c r i t i c a l .  

It appears t ha t  
Indeed, t he  use of 



aerodynamic surfaces f o r  stabil i ty and control on missiles operating 
within the ear th ' s  atmosphere (such as ground-to-air, air-to-ground, 
and a i r - to-a i r  missiles) has increased the general overall  area where 
aeroelastic problems are of concern. "here i s  some information avail- 
able from wind-tunnel tests on surfaces sui table  f o r  use on missiles 
(see, fo r  example, ref. 1) , but extensive data on a var ie ty  of configu- 
ra t ions is  lacking. 
f i l l  the void l e f t  by the limited experimental resu l t s  available, pro- 
posed aerodynamic surfaces must usually be t e s t ed  f o r  f l u t t e r .  

I n  the absence of proven analyt ical  methods t o  

Consequently, a ser ies  of l/k-scale models of the aerodynamic sur- 
faces of a ground-to-air missile were constructed and have been t e s t ed  
i n  the Langley Unitary P lan  wind tunne1,over the Mach number range from 
1.49 t o  2.87. 
the configurations consisted of a cantilevered inboard panel with a t i p  
control surface forming the outboard portion of the configuration. The 
fourth configuration was a sting-mounted mtched pa i r  of all-movable 
control surfaces linked through a spring simulating the s t i f fness  of a 
common actuator system. "he e f fec ts  of variations of frequency r a t i o  - 
r a t i o  of uncoupled bending t o  uncoupled control rotat ion - on the flutter 
character is t ics  of a l l  configurations were investigated. Also, studies 
were made of the e f fec ts  of mass balance as a f l u t t e r  a l lev ia tor .  

Four different  se r ies  of models were tes ted.  Three of 

Some of the experimental results were compared with calculated 
resu l t s .  
using two uncoupled modes and second-order piston theory aerodynmics. 

The analyt ical  treatment used was of the Rayleigh type, 

SYMBOLS 

b reference length, c"/2 

C chord 
I 

C mean aerodynamic chord 

g s t ruc tu ra l  damping coefficient 

1, mass moment of i n e r t i a  about center of gravity 

M Mach number 

m mass 



q m c  pressure, &v2 

V stream velocity 

X distance from t r a i l i n g  edge t o  center of gravity, measured 
pa ra l l e l  t o  root chord 

Y distance from root chord t o  center of gravity, measured 
perpendicular t o  root chord 

1 density P 

? w circular  frequency 
) 

m 
P mass - r a t  i o  parameter, 

Subscripts : 

C calculated 

f values at f l u t t e r  

h bending mode 

a tors ional  mode 

P antisymmetrical ro ta t iona l  mode 

e ro t  at ional  mode 

APPARATUS AND PROCEDURE 

Wind Tunnel 

The investigation was conducted i n  the low Mach number ,est section 
of the Langley U n i t a r y  Plan wind tunnel. 
pressure, continuous, return-flow type. 
square and approximately 7 f ee t  i n  length. The nozzle leading t o  the 
t e s t  section is of the  asymmetric sliding-block type. 
can be varied continuously through a range from approximately 1.49 t o  

This tunnel i s  a variable- 
The t e s t  section is  4 f ee t  

The Mach number 

2.87. 



Models 

Configuration.- Four ser ies  of models were tes ted.  The models of 
three of the ser ies  consisted of a cantilevered inboard panel with a 
t i p  control surface forming the outboard portion. The models of the  
fourth series were sting-mounted matched pairs  of all-movable surfaces, 
linked through a spring simulating the s t i f fness  of a common actuator 
system. Drawings of the models, giving the details of model geometry, 
are presented i n  figure 1. All models tes ted  had circular-arc a i r f o i l  
sections, modified over the truncated portion of the planforms t o  have 
a blunt t r a i l i n g  edge. 

The models of ser ies  1 had a panel aspect r a t i o  of 1.12, a leading- 
edge sweep of 50°, a thickness-chord r a t i o  of 5 percent, and were equipped 
with a t i p  control surface attached t o  a canMlevered inboard panel through 
a hinge tube located at  36.6 percent of the  mean aerodynamic chord. 
surface area of the control surface was 21.5 percent of the t o t a l  planform 
area. The main configuration variable within t h i s  ser ies  was the rota- 
t i ona l  s t i f fness  of the  movable surface. This s t i f fness  was controlled 
by varying the  s t i f fness  of a cantilever spring which restrained the 
hinge tube i n  rotation. Two models of t h i s  ser ies  were tes ted  with a 
boom-mounted mass balance attached t o  the movable surface. This boom 
was attached at the 81.5-percent-span s ta t ion  and increased the weight 
of the basic movable surface by about 18 percent. The addition of the 
boom produced a forward shift of the  control-surface center of gravity 
of about 2.7 percent of the mean aerodynamic chord. 
se r ies  were mounted on the tunnel sidewall. I n  order t o  minimize 
boundary-layer e f fec ts  the models were attached t o  a fixed strut 
extending about 4 inches from the  tunnel w a l l .  
model was r ig id ly  attached t o  the strut and the model w&s pinned t o  the 
strut near the leading edge t o  prevent any twisting of the spar at the 
model root. 
the full-scale missile. 
mounted i n  the t e s t  section is  shown as figure 2(a). 

I The 

The models of th i s  

The main spar of the 

This method of mounting was similar t o  t ha t  employed on 
A photograph of a typical  model of t h i s  se r ies  

The models of both series 2 and 3 had a panel aspect r a t i o  of 1.19, 
a leading-edge sweep of 31.66', a thickness-chord r a t i o  of 5.75 percent, 
and were equipped with a t i p  control surface attached t o  a cantilevered 
inboard panel through a hinge tube located a t  49 percent of the mean 
aerodynamic chord. 
cent of the  t o t a l  planform area. The differences between the  two ser ies  
were i n  the location of the  e l a s t i c  axis  of the  fixed portion and i n  the 
mass properties of this  portion. The external geometry of both ser ies  
was ident ical .  The difference between the models i n  a par t icular  series 
was i n  the rotat ional  s t i f fness  of the t i p  control surface. This stiff- 
ness was controlled i n  a manner similar t o  t h a t  described f o r  se r ies  1. 
One model of series 3 w a s  equipped with mass balance. This balance was 
a weighted leading edge wbich increasedthe basic weight of the movable 

The surface area of the control surface was 28.8 per- 
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surface by about 21 percent. 
a f o m r d  s h i f t  of the control-surface center of gravity of about 5.4 per- 
cent of the mean a e r o d y n d c  chord. 
was similar t o  t h a t  f o r  se r ies  1. 
t h i s  se r ies  mounted i n  the t e s t  section is  shown as figure 2(b) .  

The addition of the mass balance produced 

The method of mounting these models 
A photograph of a typ ica l  model of 

The models of se r ies  4 consisted of seven pairs  of matched a l l -  
movable control surfaces having a thickness-chord r a t i o  of 5 percent, 
a single panel aspect r a t i o  of 1.04, and a leading-edge sweep of 46’. 
A l l  but two of these pairs  were equipped with a boom-mounted mass bal- 
ance located a t  the 59.3-percent-exposed-semispan s ta t ion.  The added 
weight of the boom was  about 14.5 percent of the basic surface weight. 
The addition of the  balance boom produced a forward sh i f t  of the sur- 
face center of gravity of about 7.4 percent of the mean aerodynamic 
chord. These models were s t i ng  mounted with the l e f t -  and right-hand 
panels l inkedthrough a spring simulating the s t i f fness  of a common 
actuator system. 
i n  the  tunnel test  section is  shown as figure 2(c) .  

A photograph of a typ ica l  model of t h i s  series mounted 

Construction.- A conventional spar and skin type of construction 
was used f o r  all models. The aluminum skins of the models were stabi- 
l ized w i t h  a core of 0.25- by 0.001-inch hexagonal aluminum honeycomb. 
The skin thicknesses ranged from 0.004 t o  0.012 inch. 
bending s t i f fness  of the models was determSned by the stiffness of the 
aluminum spar, and the  basic to rs iona l  s t i f fnes s  was determined by the 
thickness of the skin. m e  rotat ional  s t i f f n e w  of the movable surfaces 
was controlled by the  use of springs. Certain portions of the honeycomb 
core were f i l l e d  with lead t o  obtain the desired mass properties. The 
mass-balance booms were constructed of lead-f i l led 0 .OlO-inch aluminum 
tubing with a 0.355-inch outside diameter. 

The basic 

Physical properties.- The mass properties of the models t e s t ed  a re  
given in tab le  I. For the models of the first three ser ies ,  where the 
rotat ional  s t i f fnes s  of the  movable portion of the surface was varied 
by the  use of springs and the spring weights varied according t o  t h e i r  
respective s t i f fnesses ,  an average value of the  spring weights was used 
and was included i n  the weight f o r  each model. Since the actuator sys- 
t e m  f o r  the models of se r ies  4 was mounted externally, the weight of the 
actuator system i s  not included i n  the weights of the  models of t h i s  
se r ies .  Presented i n  tab le  I1 i s  a spanwise breakdown of the mass prop- 
erties f o r  a ty-picalmodel of each ser ies .  

Pr ior  t o  the tunnel tests the first three uncoupled mode shapes 
(bending, torsion, and control rotat ion)  were measured f o r  a typ ica l  
model of series 1 and 2. The rotationalmode was sinrply a rigid-body 
rotat ion of the t i p  control surface about the hinge l i ne .  
bending and tors ion measurements, rotat ion of the movable surface was 
prevented by clamping the t i p  control surfrkce t o  the inboard portion of 

For the 



the model. When the rotat ional  mode shape w a s  determined, bending and 
torsion were prevented by the use of an appropriate clamping system. 
The measured bending and tors ional  mode shapes are presented i n  table  111. D 

Although no mode shapes were measured f o r  a sample model of ser ies  3, it 
i s  believed tha t  the mode shapes of these models are quite s i m i l a r  t o  
those of the ser ies  2 models. Prior t o  each tunnel t e s t  the first three 
uncoupled natural  frequencies and t h e i r  corresponding s t ruc tura l  damping 
coefficients were measured f o r  each model tested.  These values are 
tabulated i n  table  IV. 

L 
Test Procedure 1 

2 
6 

The same general procedure w a s  used f o r  a l l  the t e s t s .  The deter- 1 
mination of a typ ica l  f l u t t e r  point proceeded as follows: With the tun- 
ne l  evacuated t o  a low stagnation pressure (1.5 lb/sq in. abs) super- 
sonic flow w a s  established i n  the t e s t  section w i t h  the nozzle block se t  
on i t s  optimum set t ing.  The nozzle block was then s e t  fo r  the desired 
test-section Mach number. The tunnel stagnation pressure was then grad- 
ua l ly  increased u n t i l  f l u t t e r  occurred. A t  th i s  point the stagnation 
pressure was held constant and the tunnel conditions necessary t o  
describe the point were recorded. The tunnel stagnation pressure w a s  
then rapidly decreased u n t i l  the f l u t t e r  stopped. 
the tunnel instrumentation w a s  made. The second data point w a s  the one 
used t o  describe the f l u t t e r  condition. 
a s l i gh t  penetration was  made in to  the f l u t t e r  region, and the two se t s  
of data were i n  close agreement. After the f l u t t e r  point had been taken 
the stagnation pressure was decreased t o  some low value a f t e r  which the 
nozzle block w a s  s e t  f o r  a new Mach number and the above procedure 
repeated a t  enough points t o  describe the f l u t t e r  boundary within the 
operational character is t ics  of the tunnel or u n t i l  the model w a s  
destroyed. When no f l u t t e r  was obtained at  a par t icular  Mach number, 
a data point was  taken a t  the maximum conditions obtainable a t  the time. 

Again, a reading of 

Due t o  tunnel turbulence only 

The start and stop of f l u t t e r  was determined by observing an osci l -  
loscope on which the model bending and pitching strain-gage signals were 
displayed on the horizontal and ve r t i ca l  axes, respectively. A t  f l u t t e r  
a Lissajous figure appeared on the oscilloscope. The strain-gage signals 
were also recorded on a recording oscilloscope and a tape recorder. 
Visual records of the f l u t t e r  obtained were made with high-speed motion- 
picture cameras. 



liESULTS AND DISCUSSION 

$ Experimental Results 

d The basic data  obtained are presented i n  table V and figure 3. The 
curves shown i n  figure 3 represent s t a b i l i t y  boundaries i n  terms of the 
variation with Mach number of the dynamic pressure at  the f l u t t e r  condi- 
t ion.  The unstable region i s  above the curve. Since the models i n  any 
one ser ies  had essent ia l ly  the same physical properties except i n  regard 
t o  frequency rat io ,  subsequent comparisons w i l l  be made by using the 
r a t io  of uncoupled bending frequency t o  uncoupled rotat ional  frequency 
(hereafter referred t o  as frequency r a t io )  as the important variable 
between models. 
percentage w i l l  be assumed t o  have the same properties. 

Models whose frequency ra t ios  d i f f e r  by only a s m a l l  

Series 1.- As shown i n  figure 3(a) f l u t t e r  was obtained throughout 
the tunnel operating range f o r  models w i t h  a frequency r a t io  of about 0.96 
and 0.72. 
of 0.59. Also, considerable f l u t t e r  data were determined f o r  the mass- 
balanced configuration w i t h  a frequency r a t i o  of 0.93. 
were found f o r  models w i t h  frequency ra t ios  of 0.53 and 0.45, or f o r  a 
boom-mounted mass-balanced model with a frequency r a t i o  of 0.74. 
indicated by the figure decreasing the frequency r a t i o  has a s tabi l iz ing 

t ion  i n  frequency r a t i o  from about 0.96 t o  0.70 approximately t r i p l e s  
the dynamic pressure required t o  produce f l u t t e r  throughout the t e s t  Mach 
number range. The experimental resu l t s  indicate an almost l inear  increase 
i n  f l u t t e r  dynamic pressure w i t h  Mach number. 

Two points were obtained for  models w i t h  a frequency r a t i o  

No f l u t t e r  points 

As 

10 ef fec t  i n  the range below a frequency r a t i o  of 1. For example, a reduc- 

0 

The t e s t  resu l t s  indicate a s tabi l iz ing e f fec t  of mass balance on 
the f l u t t e r  character is t ics .  This i s  best  i l l u s t r a t ed  by comparing the 
f l u t t e r  data f o r  an unbalanced model with a frequency r a t i o  of about 0.70 
with the no-flutter data fo r  the balanced model w i t h  a frequency r a t i o  
of 0.74. Comparing the data f o r  the unbalanced model with a frequency 
r a t i o  of about 0.96 with tha t  of the balanced model w i t h  a frequency 
r a t i o  of 0.93 indicates t ha t  m a s s  balance becomes more effect ive i n  
s tab i l iz ing  the model w i t h  increasing Mach number. However, the e f fec t  
of mass balance has probably been magnified t o  some extent because the 
addition of the balance boom resulted i n  a s l igh t ly  lower frequency ratio,  
which has also been shown t o  have a s tab i l iz ing  effect .  
e f fec t  of mass balance becomes more pronounced w i t h  decreasing values of 
frequency rat io .  

The beneficial  

s The type of f l u t t e r  mode found f o r  the models of t h i s  ser ies  was  
primarily a combination of bending and control rotation. 
frequency r a t i o  tes ted the rotat ion predominated. With decreasing f re -  
quency r a t i o  the proportion of bending contained i n  the mode became larger.  

A t  the largest  
n 



Series 2.- Reference t o  figure 3(b) shows that only a limited num- 
ber of f l u t t e r  points were determined f o r  the models of t h i s  series.  
It should be noted that  the f l u t t e r  point a t  M = 1.57 f o r  the model 
w i t h  a frequency r a t io  of 0.57 i s  questionable since the model experienced 
some severe aerodynamic loading a t  the tunnel start,  possibly weakening 
the model structurally.  Consequently, the f l u t t e r  point a t  th i s  Mach 
number fo r  the model with a frequency r a t i o  of 0.58 i s  believed t o  be 
more representative of the f l u t t e r  condition f o r  models having th i s  
ra t io .  
has a s tabi l iz ing e f fec t  over the range of Mach numbers investigated. 
Also, there appears t o  be a more rapid increase of f l u t t e r  dynamic pres- 
sure w i t h  Mach number than w a s  found f o r  the models of se r ies  1. The 
f l u t t e r  mode fo r  these models w a s  essent ia l ly  a combination of bending 
and control rotation. 

"r 

As shown i n  the figure the e f f ec t  of decreasing frequency r a t i o  

1 

Series 3.- The f l u t t e r  s t a b i l i t y  boundaries fo r  the models of th i s  
se r ies  are presented i n  figure 3(c). 
pressure with Mach number i s  far more pronounced f o r  the models of 
ser ies  3 than that found f o r  the models of se r ies  1. In fact ,  the 
f l u t t e r  dynamic pressure f o r  the model with frequency r a t io  of 0.60 
appears t o  be approaching an asymptote around M = 2.1. An examination 
of some of the steady-state aerodynamic characterist ics,  par t icular  
emphasis being placed on the variation of the tip-control hinge-moment 
coefficient with Mach number, of ser ies  1 and of ser ies  2 and 3 w a s  made 
i n  an e f fo r t  t o  explain the different  variation of f l u t t e r  dynamic pres- 
sure w i t h  Mach number found fo r  the two planforms. This examination 
gave no indication that dissimilar f l u t t e r  characterist ics should be 
expected. The models of t h i s  se r ies  also exhibit  the s tabi l iz ing e f fec t  
of reducing the frequency rat io .  
figuration appear t o  indicate a s tab i l iz ing  e f fec t  since it would be 
expected that an unbalanced model w i t h  a frequency r a t i o  of 0.77 would 
f l u t t e r  a t  a lower dynamic pressure than a model w i t h  a frequency r a t i o  
of 0.60, and no f l u t t e r  points were obtained fo r  the balanced model at  
dynamic pressures about 1.8 times those fo r  the unbalanced model w i t h  
a frequency r a t i o  of 0.60. 

The variation of f l u t t e r  dynamic 

The data f o r  the mass-balanced con- 

Series 4.- Only two f l u t t e r  points were determined fo r  the models 
tes ted of th i s  series.  Both of these points were determined f o r  models 
which were not equipped with mass-balance booms and had a frequency 
r a t i o  of about 1.73. For the f l u t t e r  point at M = 1.90 the model 
began t o  f l u t t e r  i n  a limited-amplitude antisymmetrical bending-rotational 
mode. This beginning of f l u t t e r  w a s  unnoticed since the strain-gage 
signals which were being monitored on the oscilloscope were insensit ive 
t o  antisymmetrical modes. Consequently, the tunnel pressure w a s  allowed 
t o  continue t o  increase. After a s m a l l  increase i n  pressure the f l u t t e r  
mode changed t o  a diverging symmetrical mode result ing i n  the destruc- 
t ion  of the model. The model which w a s  f lu t te red  a t  M = 2.2 w a s  



damaged a t  the beginning of f l u t t e r .  
f o r  t h i s  model w a s  not determined. 

The nature of the f l u t t e r  mode 

Calculated Results 

9 

Theoretical f l u t t e r  calculations were made f o r  a l l  of the models 
of ser ies  1 and f o r  some of the models of ser ies  2 and 3. These cal- 
culations were made by using piston-theory aerodynamics with the e f fec ts  
of thickness included ( re f .  2 )  and two uncoupled modes (bending and 
control-surface rotation) with zero s t ruc tura l  damping. 

The resu l t s  of f l u t t e r  calculations f o r  the models of ser ies  1 are 
As shown i n  figure 4 where the variation presented i n  figures 4 and 5.  

of the calculated f l u t t e r  velocity index parameter - w i t h  Mach 

number i s  compared with the corresponding experimental data, good agree- 
ment was found between theory and experiment. The theoret ical  resu l t s  
f o r  the unbalanced surfaces become more unconservative w i t h  decreasing 
frequency ra t io .  Conservative resu l t s  were found f o r  the model equipped 
with the mass-balance boom. The calculated f l u t t e r  frequencies are also 
i n  good agreement with experiment. This can be seen i n  figure 5 where 
the variation w i t h  Mach number of the r a t i o  of measured t o  calculated 
f l u t t e r  frequency i s  presented. 

%\li;l 

The resu l t s  of calculations f o r  the models of ser ies  2 and 3 were 
This unconservatism i s  i l l u s t r a t ed  i n  figure 6 highly unconservative. 

where a comparison of measured and calculated variations w i t h  Mach 
number of the velocity index parameter are presented fo r  the model of 
se r ies  3 w i t h  a frequency r a t i o  of 0.60. 
the variation of the experimental f l u t t e r  dynamic pressure w i t h  Mach 
number was quite d i f fe ren t  f o r  the models of ser ies  1 and of se r ies  2 
and 3. The analysis used predicted a different  f l u t t e r  behavior f o r  
the two planforms; however, th i s  analysis gave good resu l t s  f o r  se r ies  
and unconservative resu l t s  for ser ies  2 and 3 .  The calculated f l u t t e r  
frequency was about 20 percent higher than tha t  found experimentally. 

It has been pointed out tha t  

CONCLUDING REMARKS 

1 

Wind-tunnel tests have been completed on four ser ies  of low-aspect- 
r a t i o  surfaces i n  the Mach number range from 1.49 t o  2.87. 
the ser ies  tes ted consisted of a cantilevered inboard panel with a t i p  
control surface forming the outboard portion of the configuration. The 
fourth ser ies  consisted of sting-mounted matched pairs  of all-movable 
control surfaces linked through a spring simutating the s t i f fness  of a 

Three of 



common actuator system. Models of each ser ies  w i t h  several d i f fe ren t  
values of the r a t i o  of uncoupled bending frequency t o  uncoupled rota- 
t i ona l  frequency were tested. 
with mass balance. Within the range covered, it was found tha t  the 
lowest f l u t t e r  dynamic pressures were obtained when the r a t i o  of uncoupled 
bending frequency t o  uncoupled rotat ional  frequency w a s  near 1 and tha t  
f l u t t e r  may be eliminated or the dynamic pressure a t  f l u t t e r  may be 
increased by the use of m a s s  balance, the e f fec t  being greater a t  the 
lower frequency rat ios .  

ra‘ 
Some of the models tes ted were equipped 

Calculations based on piston theory gave good resu l t s  f o r  a l l  of 
the models of one of the ser ies  with the movable surface forming the 
outboard portion. Similar calculations f o r  the other two ser ies  w i t h  
the t i p  control surface were highly unconservative. The reason f o r  
this  unconservatism was  not determined. 
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Ratio All-Movable Half-Span Control Surfaces a t  Mach Numbers From 
1.49 t o  2.87. NACA RM LsB20,  1958. 

2. Ashley, Holt, and Zartarian, Garabed: Piston Theory - A New Aero- 
dynamic Tool f o r  the Aeroelastician. Jour. Aero. Sci., vol. 23, 
no. 12, Dee. 1956, pp. 1109-1118. 
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TABLE 11.- TYPICAL SPANWISE DISTRIBUTION OF MASS, MOMENT 

OF INERTIA, AND CENTER-'OF-GRAVITY LOCATION 

Span interval, 
f ract ion of span 

0 t o  0.0995 

00995 t o  '195 

.i95 t o  .290 

.290 .to .%6 

.%6 t o  .466 

.466 t o  .577 

a.577 to .581 

.581 t o  A89 

A89 t o  .797 

-797 t o  -905 

.905 t o  1.0 

(a) Series 1 without m a s s  balance 

m, slugs 

0.02453 

007919 

.006429 

.005845 

,005624 

03039 

.007484 

.004177 

.mi522 

000357 

Ia, slug-ft2 

0.01736 

.005129 

003623 

.002704 

.001803 

.001620 

.0009446 

.0002480 

.00005823 

.00004313 

x, f t  

1- 5350 

1.2550 

1.1892 

1.1000 

1.0108 

8950 

.8208 

.6048 

.2981 

1315 

Y, ft  

0.0752 

- 2970 

.4880 

,6788 

.8647 

1.0567 

1.2347 

1.4813 

1.6672 

1.8587 - 
a 0.10-inch gap between fixed and all-movable surfaces. 



TABU 11. - TYPICAL SPANWISE DISTRIBUTION OF MASS, MOMENT 

OF INERTIA, AND CENTER-OF-GRAVITY LOCATION - Continued 

(b) Series 2 without m a s s  balance 

Span interval,  
f ract ion of span 

0 t o  0.0673 

.0673 t o  .134 

.134 t o  .201 

.201 t o  .268 

.268 t o  .336 

.336 t o  ,403 

.403 t o  .471 

.471 t o  ,538 

".538 t o  .541 

.541 t o  .636 

.636 t o  .731 

.731 t o  .826 

.826 to .921 

.921 t o  1.0 

m, slugs 

0.007143 

.001646 

.001366 

.004441 

001553 

001739 

,002143 

' 007547 

.003680 

.001304 

.0007671 

,001025 

.0001180 

I, slug-ft2 

0.0009985 

.0002825 

.0002502 

.0002221 

.mol898 

,0001682 

.0001467 

.0002372 

.0002459 

.0001100 

,00003990 

.00001510 

.00000043 

x, f t  

0.6308 

' 7883 

7625 

' 7333 

.7117 

.6950 

.6858 

6793 

.6397 

.5000 

* 3683 

. 3 2 6  

.19M 

Y, ft 

0.02375 

.1271 

.2187 

- 2979 

.4004 

4971 

.5804 

.6812 

.7604 

.8962 

1.0279 

1.1604 

1.2462 

0.062- inch gap be tween fixed and all-movable surf aces. a 



TABU 11.- TYPICAL SPANWISE DISTRIBUTION OF MASS, MOMENT 

OF INERTIA, AND CENTER-OF-GRAVITY LOCATION - Concluded 

0.7458 

,6950 

.6665 

1655 

(e )  Series 3 without m a s s  balance 

0.0750 

3483 

5450 

7542 

Span interval, 
f ract ion of span 

8. 

0 t o  0.134 

.134 t o  .268 

.268 t o  .403 

.403 t o  .538 

a.538 t o  .541 

,541 t o  .636 

.636 t o  .731 

,731 t o  .826 

.826 t o  .921 

.921 t o  1.0 

0 t o  0.250 0 06957 

,250 t o  .500 .003944 

,500 t o  ,750 .005000 

.750 t o  1.0 .0006211 - 

m, slugs 

0.01876 

.004668 

.003043 

. .007202 

.003680 

.001304 

.0007671 

.001025 

.0001180 

& slug-ft  2 

0.001911 

.0004702 

,0003237 

.0002847 

.0002459 

.0001100 

,00003990 

.00001510 

.00000043 

%. 062-inch gap between fixed and all-movable 

(a) Series 4 with mass balance 

m, slugs Span interval,  
f ract ion of span 

r, slug-ft2 

0 0005737 

.0003580 

.0003709 

.000005607 

~~ 

x, f t  

0 * 7233 

.6667 

6992 

* 6533 

6397 

.5000 

* 3683 

,3206 

.1948 

surf aces . 

Y., ft 

0.08125 

* 2729 

,4446 

,6704 

.7604 

.8962 

1.0279 

1.1604 

1.2462 



TABI;E 111.- UNC0UPL;ED NATURAL MODE SHAPES FOR TYPICAL 

Fraction 
s p a  

0.899 
.865 
.781 - 697 
.614 
-530 
.446 
.362 
279 
195 
.111 

Fraction 
S p a  

0.899 
.865 
.781 
697 

.614 

.446 

.362 
279 
195 
.111 

530 

MODELS OF SERIES 1 AND 2 

(a) Series 1, bending 

[Uh = 468.1; gh = 0.0151 

Fraction chord 

0.10 

1.000 
939 
' 772 
.614 
.482 
351 
237 

.140 

.070 

.026 ----- 

0.30 

1.096 
1.009 

* 789 
.614 
.456 
.342 
237 

.158 

.088 

.044 ----- 

0.50 

----- 
----- 
1.000 

754 
570 

.404 

.281 
' 175 
.og6 
.044 
.018 

(b) Series 1, torsion 

[% = 1,011.6; @;a = 0.0121 

0.10 

1.000 
5.666 

17.665 

36.663 
9.330 
36.330 
32 9 997 
27.664 
20.331 
11.666 

'28.331 

0.30 

-13.332 
-8.333 
2.000 

10.999 
17.665 
21.665 
23.331 
22.998 
20.998 
18.332 
14.665 

Fraction chord 

0.50 0.70 

-I----- 

------- 
-31.330 
-24.998 - 19.665 
-14.999 
-10.666 

-6 * 999 
-4.666 
-3.000 . -1.667 

0.90 



TABLE 111.- UNCOUPI&D NATURAL MODE SHAPES FOR TYPICAL 

MODELS OF SERIES 1 A N D  2 - Concluded 

( c )  Series 2, bending 

[q = 659.m”; gh = 0.0231 

- 
Fraction 

SP= 

0.903 
798 

.672 
609 

507 
.419 
.292 
.166 
.Ob0 

545 

I 

Fraction chord 

0.10 0.50 0.90 

1.000 
1.010 -0.164 ------ 
1.060 - 0 193 
1.100 - -214 ------ 

.836 - 179 -1.614 
* 750 -. 150 -1.286 
,607 -.loo -1.050 
.429 - ,043 - -729 
.250 - .014 - .414 

- 9 157 .086 ------ 

-----* ------ 
------ 

Fraction I span 

0.903 
798 

.672 

.609 
545 
507 

.419 
,292 
.166 
.Ob0 

I Fraction chord 

0.10 

-1.000 
.801 
.686 
.490 
.405 
353 

.252 
* .147 
.062 
.013 

----- 
0.765 
’ 556 
.461 
379 
333 

,242 
.131 
.049 
.007 

0.90 

(d) Series 2, torsion 

[% = 1,470.3; ~a = 0.0281 



TABU IT.- MODEL FREQUENCY DATA 

(a) Series 1 

Model 

l a  

lb 

IC 

Id  

l e  

If 

143 

Ih 

li 

U 

Mode 1 

2a 

2b 

2c 

2d 

2e 

0.45 

53 

59 

-70 

71 

9 74 

.94 

98 

74 

93 

%I% 
0.52 

-57 

58 

73 

.81 

436 

494 

464 

494 

494 

495 

489 

497 

446 

455 

628 

677 

704 

729 

716 

gh 

0.020 

.009 

.034 

- ow 
. 009 

.016 

.018 

.015 

- 033 

.027 

'De 

979 

926 

791 

708 

699 

664 

518 

505 

599 

488 

(b) Series 2 

gh 

0.025 

.040 

.016 

.020 

.018 

ge 

----- 
---e- 

o. 033 

-. 042 

,027 

.025 

033 

.032 

.023 

.025 

gf3 

0. I20 

.064 

. I20 

.a0 

.110 

1,051 

1,014 

1,018 

1,014 

1,014 

1,000 

1,060 

1,028 

937 

955 

LDa 

1,508 

1,374 

1,558 

1,389 

1,483 

ga 

0.038 

.027 

.044 

.027 

.027 

.094 

.018 

. or5 

.040 

.010 

gcL 

0.061 

.0b5 

,060 

.041 

067 



% 

1,420 

1,420 

1,420 

1,571 

ga 

0.052 

,052 

.052 

.058 

0.098 

-130 

----e 

----- 
,121 

.136 

.o80 

1,167 

1,297 

----- 

1,068 

1,100 

1,026 

TABU3 N.- MODEL FREQUENCY DATA - Concluded 

(c) Series 3 

Mode 1 @;h 

0.50 

.60 

.64 

9 77 

0.018 

.018 

.018 

,017 

1,219 

1,005 

943 

804 

0. E O  

,080 

.080 

.068 

(d) Series 4 

oha gh "e I "P Mode 1 

4a 

4b 

4c 

4d 

4e 

4f 

463 

1.72 

1.74 

83 

.84 

1.50 

2.08 

2.12 

0.080 

057 

----- 
.024 

.070 

- 033 

780 

806 

1,010 

1,005 

682 

503 

495 

0.120 

. a 9  

----- 
.071 

.050 

057 

1,339 

1,399 

842 

842 

1,024 

1,047 

1,051 



Model 

la 

lb 

IC 

Id 

l e  

lf 

lg 

Ih 

li 

1 J  

% q 

0.45 

I 

0.53 

0.59 

0.70 

0.71 

0.74 

0.94 

0.9  

0.74 

0.93 

~ 8 . 4 0  x 
14.70 
13.48 

7.92 x 10-4 
7.72 
6.79 

13.73 x 10-4 
E.53 
7.99 

613 
636 

8.96 
11.21 
u . 2 3  

21.05 
21.60 
24.56 

12.33 
13.52 
21.20 

0.586 No f l u t t e i  
.590 No f lu t t e i  
.616 No f lu t te r  

0.527 No f l u t t e i  
.540 No f lu t te r  
.526 No f l u t t e i  

0.698 
.72l 
.613 No f lu t t e i  

28.41 

20.22 
24.30 

34.23 
37.05 

L06.75 
L05.20 
L16.75 

66.15 
80.15 

10.06 
15.28 

67.50 

72.60 
78.90 

68.80 

77Z.20 

74.10 
72-00 

0.589 

0.546 

0.598 

.560 

-598 

0.417 
.436 
.432 

0.410 
.423 

0.916 No f lu t te i  
.9O6 No f lu t te i  

0.434 

.472 

.465 

.440 

.496 

.534 
-539 

5.20 x 10-4 
4.81 

1.58 x 
1.61 
1.45 

2,52 x 10-4 
2.08 

18.04 X 
11.88 

2.70 x 10-4 
2.65 
2.51 
2.31 
2.36 
2.53 
2.46 

576 
566 

530 
530 
533 

535 
535 

473 
473 
473 
473 
473 
468 
468 

TABm V:- BASIC TEST DATA 

(a) Series 1 

7T-T-z- ;lugs/cu f t  radians/sec M 9, 
lb/sq f t  

VJ 
ft /sec 

1- 57 
1.90 
2.23 

2.40 
2.60 
2.87 

1.90 
- 

2.20 
2.40 

2.40 
- 

l J  g89 
2 , 061 
2 , 144 

lJ 
1.860 
1J 981 

1,133 * 6.81 

0.792 

1.57 
1.90 

947 
1,000 

0.835 
.849 

2.60 
2.87 

0.867 
.852 - 

1.024 
1,024 
1.029 - 
1.06c 
1.06c - 

~ 

0.96€ 
.96€ 
.96€ 
.96€ 
.96€ 
- 95f - 95f - 

1,104 
1,105 

310 
339 
331 

282 
3,302 

2,147 
2,104 

321 
323 
381 
369 

497 
489 

420 

2,061 
2,144 

1J 

2,053 
2,136 

1J 497 
1,702 

2.40 
2.60 
2.87 - 
1-57 
1.w 
1-57 
2.2c 

1.57 
1.6: 
1 . 9 ~  

- 

- 

1-95 
2.2c 
2.4C 
2.4: 

~ 
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Figure 2. - Concluded. 
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Figure 3.-  Variation of experimental dynamic pressure a t  f l u t t e r  with 
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Figure 3.  - Continued. 



3J 

rl 
\D cu 
rl 

A 

4,000 

3,500 

3,O 0 0 

2,500 

2,000 

I ,50 0 

1,000 

50C 

C 

Flutter No 

0 0 
0 rn 
0 

A 

flutter 

I 
1- 
I 
I 

I 
I 

I 
I 

I 
I 

I 
I 
I 

I 
0 1  

/" / /t 
/ 

/ 
/ 

/ 

wh/wg 

0.64 
.60 
.50 
.77 (mass balanced) 

I 
I 

Approximate tunnel 
operational limits 

I 
I 
I 
I 

J \\ 1.5 2.0 2.5 3.0 
M 

(c )  Series 3 .  

Figure 3 .  - Continued. 



,, . - >  'i 

4,000 

3,500 

3,000 

2,500 

q, Ib/sq f t  2,000 

1,500 

5 0 0  

0 

Flutter No 

0 0 

+ 
A 

f I ut ter 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 

I .73 

2. IO 

I 
I 
I 
I 

Approximate tunnel 
operational limits 

1 ,  I I I 
J 

1.5 2.0 2.5 3.0 
M 

(d) Series 4. 

Figure 3.  - Concluded. 



J 

c 

35 
i ” , 

.a 

.6 

.4 

. 2  

C 

.2 

- 
0 0 

40 flutter 

0 Experimenl 

- Theory 

I I 1 I I 
1.0 1.5 2 .o 2.5 3.0 

M 

(a) 3 = 0.59. 

0 Experiment 

- Theory 

I I I 1 
1.5 2.0 2.5 3.0 

M 

Wh 
we (b) - = 0.72. 

Figure 4.- Comparison of var ia t ion of experimental and calculated 
i t y  index parameter w i t h  Mach number for models of se r ies  1. 

veloc- 



.6 

.4 

.2 

0 

.6 

.4 

.2 

0 

0 
/s -0 -r)o 

0 Experiment 

- Theory 

I I 1 I 1 
1.0 I. 5 2.0 2.5 3.0 

M 

% 
9 3  

(c) - 5+: 0.96. 

0 Experiment 

- Theory 

I I I I I 
1.0 1.5 2.0 2.5 3.0 

M 

(d) 3 5+: 0.93 (mass balanced). 
'u0 

Figure 4. - Concluded. 



In 
In 
0 
E 
v n 

N 

E 

2 
N 

? - 



I .6 

I .4 

1.2 

1.0 

v 

.6 

.4 

.2 

C 

V 
a f -  No 

0 
0 

0 

0 

0 Experiment 

- Theory 

1 I I I 1 

1.0 1.5 2.0 2.5 3.0 
M 

Figure 6.- Comparison of variation of experimental and calculated veloc- 

i t y  index parameter with Mach number f o r  model 3d. 9-l - = 0.60. 
Oe 

b 

NASA-Langley, 1961 L-1261 




